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1 Introduction 

The field of accelerator magnets is usually measured using rotating coils. These 
coils are known as “harmonic probes” because they provide a direct measure- 
ment of the coefficients of the harmonic expansion of the magnetic field. In 
its simplest version, a harmonic probe is simply a long and narrow rectangular 
coil. When such a coil is set to rotate uniformly with an angular velocity ws 
in a time-independent 2D magnetic field, a time-dependent periodic voltage is 
induced. The magnitude and phase of the field harmonics can be extracted from 
the signal with a spectrum analyzer. In practice, for example in measuring the 
field of a dipole magnet, the accuracy of the measure is limited by the fact that 
the signal associated with high order harmonics represents a very small frac- 
tion of the fundamental. Modern probes are therefore complex objects where 
sets of coils are connected together so as to maximize the sensitivity to certain 
harmonics while minimizing the effect of mechanical assembly errors. 

The harmonic expansion of the magnetic field diverges when the distance R 
between the point of interest and the expansion point (20, 90) is larger than the 
shortest distance between (co, ye) and the nearest source. Conventional iron- 
dominated dipole magnets often have a rectangular physical aperture which is 
wider in the radial (bending) than in the vertical plane. Assuming that the 
expansion is made about the beam axis, the harmonic series will converge only 
for dm < L,/2 w h ere L, is the total vertical aperture. In is important 
to note that in theory, knowledge of the field harmonics about any point in 
the aperture is sufficient to characterize the field everywhere. Hxver, for a 
point located outside the circle of convergence of the series, an indirect method 
must be used to calculate the field. In relation with the latter statement, it is 
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important to note that the theory refers to a situation where all harmonics are - 
known with infinite accuracy. 

In practice, multipoles are measured at two (or more) locations in addition 
to the origin. This is illustrated in figure 1. By using the appropriate series, the 
field can be determined over most of the aperture and, if the circle of convergence 
overlap, on the entire extend of the horizontal axis. Typically, ten to twenty 
multipoles coefficients are recorded for each location of the axis of the probe. 
Intuitively, it is clear that the three sets of data obtained are not independent 
‘. In fact, one can establish a relation between the three different sets of data 
and use it to improve the the accuracy on a given coefficient. 

Most accelerator tracking codes require the field to be represented by a 
polynomial in the transverse coordinates z and y. Since its coefficients are 
directly measurable, the harmonic polynomial is a natural choice. However, it 
is important to realize that this polynomial will not correctly predict 
the field when the beam excursions in the radial plane go beyond the 
radius of convergence of the harmonic series. 

There are a number of different ways to characterize a 2D field over a rectan- 
gular aperture. The most trivial one is to simply store the values of the field at 
every point on a sufficiently fine rectangular grid. The field at any point (2, y) 
can then be obtained by interpolation. It is obvious that this approach is not 
very convenient in practice because it involves a large number of parameters. 
The object of this note is to document a number of methods which may be used 
to represent a 2D magnetic field everywhere on a rectangular aperture. 

We begin with a brief review of basic 2D magnetostatics with an attempt 
to emphasize certain important points often treated in a superficial manner in 
standard textbooks. Integral representations are obtained using both Green’s 
theorem and its complex analog, the Cauchy integral theorem. The relation 
between these representations is established. Series expansions are obtained 
for both the Dirichlet and Neumann problems by solving Laplace’s equation in 
rectangular coordinates. Various 2D expansions are obtained by analytically 
continuing one dimensional expansions. Finally the problem of constructing a 
polynomial representation valid over a whole rectangular region is discussed. 

2 Theoretical Background 

2.1 2D Magnetostatics 

The equations of magnetostatics in a source-free region 

VxB = 0 (1) 
V-B = 0 (2) 

‘Once again, knowledge of all multipoles at OR)I ORC of the three locations is, in theory, 
suflicient to completely characterize the field everywhere. 
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Figure 1: Multipoles are measured at two other locations, in addition to the 
origin. 
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become, in 2D Cartesian coordinates 

BB,aBB.= 
a2 + aY 

0 

aBy 8% o 
--- = 

ax ay 

(3) 

(4 
Assuming R is a simply connected region, the magnetic field can be repre- 

sented by a scalar potential V 2 

(5) 

or a by a vector potential 3 A 

(6) 
Note that specifying the scalar potential V along a path l? amounts to specify 

the tangential component of the magnetic field along I’. Similarly, specifying A 
along l? amounts to specify the normal component of B. 

2.2 2D Harmonics 

In polar coordinates, Laplace’s equation takes on the form 

ia aA 

( > 

1 a2A -- r- +-- 
r dr ar + a82 

=o (7) 

Assuming a solution of the form 

A(r, e) = R(r)@(B) 

and substituting in (7) yields 
0” 2 
-=t 
0 

and 
r2R” rR’ 
T+R=k2 

where k2 is a constant. The solutions to equation (10) are 

R(r) = 
I 

l,logr k=O 
rk,rmk k # 0 (11) 

Similarly, the solution of equation (9) is 

e(e) = A,, sin kB + B, cos k8 

Two separate cases must be considered: 

(12) 

21n the MKS system, V is usually defined such that B = -poVV. 
3The terminology “vector” potential refers to the 3D case. In 2D, A is a pseudo scalar. 
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l The interior solution: Sl is the inside of a circle of radius re 

l The exterior solution: fl is the outside of a circle of radius re 

In the case where {Sl : 0 5 r < rs}, the solutions logr and rSk must be rejected 
due to their singular behavior at the origin. Since the potential cannot be 
continuous unless 0 has a period 27r, the potential is 

A(r, 19) = c r” (A,, sin no + B, cos no) 
n=O 

(13) 

In the case where {Q : re < r < oo), the solutions 1 and rk must be rejected 
and one has 

A(r, 0) = 2 r-” (A n sin nt9 + B, c o s d) (14) 
?a=0 

The solutions (13) and (14) are often expressed in the normalized form 

A(r, 8) = E (;) *n (a, sin n0 - b, cos d) (15) 
n=O 

2.3 CompIex Potential 

It is a well known fact that both the real and imaginary parts of an analytic 
function F(z) are harmonic functions. This suggests that either V or A could 
be considered as the real (imaginary) part of an analytic function. A convenient 
way to represent a 2D magnetic field is to introduce the complex potential 

F(r) = -(A + iv) (16) 

Under this definition, F(z) is analytic 4; however, it is important to real- 
ize that even though the real and imaginary parts of an analytic function are 
necessarily harmonic, the converse is not true in general. In other words, a 
function of the complex variable may have harmonic real and imaginary parts 
and not be analytic. A necessary and sufficient condition for analyticity is for 
the Cauchy-Riemann equations to be satisfied. With the definition (16), the two 
components of the magnetic field can be obtained from the complex potential 
by differentiating the latter with respect to z 

Interestingly, this result implies that both B, and B, are also harmonic func- 
tions since all the derivatives of an analytic function are analytic. 

‘Note that V + iA is not an analytic function. 
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; 

Any function analytic in the neighborhood of a point zs can be expanded in 
Taylor series around ze. Without loss of generality, one can always choose zo as 
the origin and write 

F(z) = gcn ($ (18) 
taco 

where 
1 d”F 

Cn = Z d(z/rO)n (19) 

Writing z in polar form 

P = r”(cos d + i sin ne) (20) 

and setting c, = b, + ia, 

A+iV=F (k)n[(a,,sinnO-b, cos ne) - i(b, sin ne + a, cos no)] (21) 
n=O 

The coefficients a,, and b, are simply the Fourier coefficients of the expansion 
of the potentials around a circle of radius rg: 

2r 
an = +l 

J = 0 
rtA(ro, 0) sinnd d4 (22) 

-& Jfr V(ro, 4) d4 n= = 
-+Joxr~V(ro,tj)cosn+ d4 n >: (23) 

b, = -1 
J 

2* 
= 0 

rg V(ro, 4) sin n# d+ 

- & 6” A(ro, 4) d4 T2= = 
-$Jo*r~A(ro,~)cosnQd~ n>“o 

(25) 

2.4 Analytic Continuation 

An analytic function is a remarkable mathematical object. It is defined to be 
a function (of the complex variable) with a unique first derivative throughout a 
region. A function so defined has extraordinary properties. It turns out to have 
unique derivatives of all orders. Its real and imaginary parts are harmonic. Its 
line integral is independent of the path. The values of the function at points on 
a close curve I’ determine its value at points inside I’. The principle of analytic 
continuation is the ultimate fabulous property of analytic functions. According 
to this principle, an analytic function is uniquely determined everywhere in the 
complex plane by its values in any neighborhood, however small, of a point zo. 
In fact, the values of the function along a path segment, however short suffice 
to uniquely determine the function everywhere. In this case, however, one must 
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be given that the function is analytic in the region including the line segment. 
In more precise terms, the following theorem holds: 

Identity theorem for analytic functions 

If two functions are analytic in a region Cl, and they coincide in a neighborhood, 
however small of a point zo of !2 or only along a path segment, however small, 
ierminating in ZO, then the two functions are equal everywhere in R. 

This implies that an analytic continuation, if it exists at all, is unique. Sup- 
pose one has an analytic function fi(z) defined in a region Rr. Suppose Rr 
is another region which overlaps Rr. If there exists a function fz(z) which is 
analytic on Cl2 and equal to fl(z) in the region RI f~ s22, then fz(z) is unique. 
In fact, fi and fi are just partial representatives of a function f(z) analytic 
throughout the combined region Ri U Rz. The so-called circle-chain method 
employing power series provides a method which in principle can be used to 
effect the analytic continuation. Start with a function defined by a power series 
in one circle. Use the values of the function so obtained to make a power series 
expansion about a point inside but near the edge of the circle, etc, etc. A conse- 
quence of the identity theorem for analytic functions, the analytic continuation 
obtained in this way is unique. The processes can be pushed as far as possible 
by extending the circle-chain in all directions the radii of the circles being, of 
course, the radii of convergence of the power series. Since whenever the func- 
tion is analytic it can be expanded into a power series, these circles eventually 
reach to every nook and cranny of the complex plane where it is possible to 
analytically continue the function. Although it is not possible to analytically 
continue through a singularity, but it will, in most cases be possible to analyti- 
cally continue around it. Note that an analytic continuation cannot be carried 
through if one meets a continuous line of singularities separating one part of the 
complex plane from the rest. 

2.5 Multipole “Feeddown” 

Consider a function G(z) analytic on a region $2. One can obtain a relation 
between the coefficients c,, of the Taylor series expansion 

G(z) = 2 C,J" C-35) 
9x0 

about the origin and the coefficients d, of the expansion about another point 
ze by using the following trick: 

G(Z) = 2 Cn(t. - zo + ~0)~ (27) 

n=O 
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u 
n=O 

(28) 

where the binomial theorem has been used to expand (z - zo + ~0)~ and it is 
assumed that 121 < 1~01. It is clear from the above result that the term of order 
n in the expansion about the origin contributes to the terms of order 1,2.. . , n 
in the expansion about ze. This phenomenon is sometimes called “multipole 
feeddown” since for example, a pure quadrupole field at the origin would result 
into a field at ze which has both a dipole and a quadrupole component. A 
relation between c,, and d, can be obtained by rearranging the terms in (28). 
Let us consider the coefficient affecting the term in (z - ~0)~. Clearly, the 
contributions to this coefficient come from the terms 

cn (Z) %o 
cn+1 (*;l)%p+l)- 
c,+2 (“n+2) %p+2)-n 

Equation (28) can obviously be written in the form 

G(z) = E [gcn (;)4Fk] (% - W 

(29) 

(30) 

By identification with 

one sees that 

G(z) = 2 dn(z - zo)” 
?I=0 

(31) 

d, = 2 c,, (Z)Z;-~ 
k=n 

(32) 

It is important to point out that this relation is valid only if the point zo 
lies inside the circle of convergence of the series (26). 

3 Representations 

In this section, we shall obtain different expressions for the magnetic field in a 
rectangular region. In all cases, the field (potential) will be expressed as a linear 
combination of basis functions &(z, y) 5. 

A(z, y) = c ck’htz, 9) (33) 
k=O 

5We consider here the discrete case, but the sum can be continuous. 
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Each basis function can be expanded in a harmonic series of the form 

dk(r,e)=C(~)~(a~kSinne-b.kCOSne) 
k=O 

(34) 

where 

(35) 

(36) 

The above relations enable us to express the coefficients of the multipole expan- 
sion of A in terms of Ck 

m 
a, = c anECk (37) 

k=O 

00 

b n= c braa% (38) 
k=O 

Written in matrix form (37) and (38) become 

a = AC (39) 
b = Bc (40) 

In general, the matrices A and B may be singular 6. To solve for the coefficient 
Ck one can form the weighted sum of (39) and (40) 

a+Xb= [A+AB]c (41) 

where .A is a suitably chosen constant r. In general, the truncated version of 
this (infinite) system will not have no solution. Nevertheless, one can obtain a 
solution in the sense of least squares 

c= [[A+XB]t[A+M]]-l [A+XB]+[a+b] (42) 

In the case where the field (potential) is a complex function, the multipole 
expansion takes on the form 

F(z) = e dk’h(%) (43) 
k=O 

6Consider, for example, the case where the source geometry is such that all skew multipoles 
an vanish. The matrix A is obviously singular in that case. 

‘More generally one could substitute a positive definite matrix for A. 
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The basis functions $k(z) are now functions of the complex variable. Expanding 
&(z) around the origin 

$k(z) = 2 cnkz" (44 
n=O 

But one can also expand F(z) 

F(%) = f&,%k 
k=O 

Substituting (44) into (43) and comparing with (45) 
00 

ck = c G&k 
n=O 

(45) 

(46) 

A truncated version of this system of equations can be solved for Ck in the sense 
of least squares. 

3.1 Integral Representations (Method of Sources) 

3.1.1 Integral Representations based on Green’s Identities 

Consider an arbitrarily shaped, simply connected region R. We shall denote a 
point (t, y) by r and a point (z’, y’) by r’. Let the distance R between r and r’ 
be defined as 

R f jr - r’l = d(z - ~$2 + (y - y’)” (47) 
If $(r’) and 4(r’) are two arbitrary scalar functions defined on R, the fol- 

lowing identity, known as Green’s identity, holds 

J 
$Vt2$ - +Yi7’24 dS’ = 

J 
t,b(ii e V’4) - O(n. V’$) ds’ (48) 

n en 

where the primes on the Laplacian operator and the differential elements mean 
that the derivatives and integrations are to be performed with respect to primed 
coordinates. Consider the function 

@(r; r’) = = &logR (49) 

It is a simple matter to verify that Cp is harmonic for all r’ # r. More specifically, 
it can be shown that 

VI20 = V20 = cS(r -r’) (50) 

Setting 4 = 0 and $ = V(r’) in (44) one obtains, for any r E Cl 

V(r) = & 
V en 

ViX7’log (;) -log (;) (&V’V)] ds’ (51) 

1 

= 2* 
$, .V’log (;) - alog (;)I ds’ (52) 
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The scalar potential V inside the region R can be interpreted as the resultant 
of the potentials produced by two kinds of sources: 

l a surface pole distribution of density u = ti . VV 

l a surface dipole distribution of density ZP = iiV 

These sources may be regarded as fictitious sources accounting for the influence 
of the sources situated in the region exterior to fl. It is important to note 
that they cannot be used to determine the field in the exterior region. On the 
contrary, these sources make the potential vanish in the exterior region since 
one has, for r $! R 

1 

i+G en J 
$,.V’log(;) -,log(;) ds=O (53) . 

This result is another demonstration of the fact that the normal and tan- 
gential components of the field (or equivalently, the real and imaginary parts of 
the complex potential) cannot be independently specified at all points of 8R. If 
one considers the potential as a known quantity and the fictitious source distri- 
butions as unknowns, equation (52) can in principle be used to determine u and 
Zr. Unfortunately, u and aP are not independent quantities and the solution is 
unique only if (53) is enforced simultaneously. 

It turns out that it is also possible to represent the field by a distribution con- 
stituted exclusively of poles or dipoles. Furthermore, no auxiliary constraint 
similar to (53) need to be enforced for the distributions to be unique. Consider 
the situation where the potential to be represented is harmonic in the region 
exterior to 52 (in other words the sources of V are situated insid: a). Apply- 
ing Green’s identity and assuming that the exterior potential V vanishes at 
infinity 

V(r) = & J 
an 

?%Vlog ($) -log (;) (&Vv) ds’ (54) 

for r in the exterior region and 

V(r) = 0 (55) 

for r in the interior region. Adding (52) and (54) yields for the interior region 

V(r) = & ln(V - v)ii. V’ log (i) -log (i) (c1. V’V - ti. V’v)) ds’ (56) 

where ti is a normal unit vector pointing outside Q If one chooses v such that 

V-V=0 on&J (57) 
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; 

(56) b ecomes 

V(r) = &Jn-log (;) (ii.V(V-ii)) ds 

which can be put in the form 

V(r) = $ J u(r’) log R ds’ 
an 

(59) 

Thus, any function V harmonic within 0 can be represented by a distribution 
of fictitious poles on 8R. Note that since V and V are unique, so is cr. In the 
same manner, one can also choose V such that 

G.V’V-fi.vv’v=o (60) 

(56) then becomes 

(V - v) ii - V’log ; 
0 

ds’ 

which can be put in the form 

V(r) = $ J,, upii . V’ log R ds’ (62) 

i.e., any function harmonic in R can be represented by a unique distribution of 
fictitious dipoles on XL Since the vector potential A is harmonic in a source-free 
region, the representations (59) and (62) can also be used for A. 

At this point, the connection between relations (59), (62) and the general 
form (33) may not be clear. This connection is perhaps easier to establish when 
(59) and (62) are written in discrete form. For example, relation (59) becomes 

v(z, y) = c U(sk) Akk log & - .‘)2 + (Y - id2 (63) 
k 

Here, Sk = (z;, &) P re resents a point on the boundary at the center of an 
interval of width Ak. Clearly, the basis functions in the expansion (33) are 

+k(z, Y) = &log & - t’)2 + (Y - y’J2 (64) 

and the coefficients ck 
ck = &.)Ak (65) 
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3.1.2 Cauchy Integral Theorem 

A most important result from the theory of analytic functions, Cauchy’s inte- 
gral theorem, states that the values of an analytic function everywhere inside 
a simply connected region $2 are completely determined by its values on the 
boundary. Cauchy’s integral theorem provides a method to actually compute 
the scalar potential F(r) for z E Q given F(r) on i3R. 

F(r) = & f Edt (66) 

Interestingly, the real and imaginary parts of a analytic function on a closed 
path are not independent since one must have 

1 

f 
w -dt=O 

2?ri t-z (67) 

for z 4 $2. In fact, one can demonstrate that the values of the complex potential 
(or any other analytic function) F(t) = -A-iv inside a region R are completely 
determined by either its real or imaginary values on 80. Let 

% E x+iy 
t E x’+ iy’ 

x E x-x’ 

Y E y-y’ 

R z d(x-~‘)~+(y--y’)~ 

With the above definitions, (66) becomes 

F(z) = -&/ [+&$I [E] dt 

= .~-/[y] [y] (dx’+idy’) 

=E $1 [A,i”] [(Ydd-Xdd)+Ri(Xdx’+Ydy’)] 

But 

Xds/ - Ydx’ L 1 
R 

= r.n 

Xdx’ + Ydy’ - 1 
R 

= r+s 

(f-58) 

(69) 
(70) 
(71) 
(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

where ii is the outward normal unit vector. Now, consider the real part of (75). 

A= & J A V 
Ei.n+Ei.sds’ (76) 
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Integrating by parts, 

J V 
--i.Ods’= -log 
R 

where the identity 
i.V’V=fi.V’A (80) 

has been used. The first term of the integrand in equation (78) can be put in 
the form 

1 i 
n.-= 

R 
ii-V’ 

1 

0 ii 
O-41) 

Finally 

A(r)=&/BnAti.V’($) -log($)ii.V’Ads’ (82) 

A similar result can be obtained for V. The Cauchy formula can therefore be 
viewed as a compact way of expressing (52). H owever, it also has the significant 
advantage that the constraint (53) is automatically enforced. Thus, given the 
complex potential F(r) inside the aperture, one would write 

F(r) N c ’ ’ --F(b)& n hi (tk - %) (83) 

c 1 1 
= -- 

n 2?ri (tk - %)ck 

and solve for the unknown (complex) coefficients ct. 

3.2 Series Expansions 

Any function harmonic on a rectangular region can be expressed in terms of its 
values and that of its derivative on the boundary by solving Laplace’s equation 
directly by the method of separation of variables. The coefficients of the series 
are then the coefficients of Fourier series expansions of the boundary data. In 
the present case, both magnetic potentials satisfy Laplace’s equation i.e., 

a2A ; lJ2A = 0 
0x2 ay2 (85) 

a2v ; a2v = 0 
8x2 i3y2 

(86) 

For the purpose of this note, we shall deal exclusively with A. Similar expres- 
sions can be obtained for V with little effort. 

A(x, Y) = X(+‘(Y) (87) 
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Substituting (87) into (85) yields the two ordinary differential equations 

d2X 
p= fk2X 

d2Y 
dy2 

= yk2Y 

(88) 

(89) 

where k is real and positive. In what follows, we shall consider the rectangu- 
lar region illustrated in figure 2. For convenience, we introduce the following 
notation 

t 
[ 

x-x 
3 min 

Xmax - xmin I 

9 5 
Y - Ymin 

Ymax - Ymin I 
L, s (Xmax - X&) 

LY E (Ymax - Ymin) 
0 5 L,/L, 

3.2.1 The Dirichlet Problem 

0-W 
(92) 

(93) 

(94 

We first consider the so-called Dirichlet problem whose solution expresses the 
potential inside a closed region in terms of its values on the boundary. Thus, 
we assume that 

A(x,Y) = fli(rl) t = o,o < 9 < 1 

A(x,Y) = fi(rl) t = *,O < ‘I < 1 

A(x,Y) = f369 v=O,O<t<l 
(95) 

A(x,Y) = f4W ‘I = 030 < < < 1 

Depending on the sign chosen for the separation constant, one gets either 

X(X) = 2 A, sin T(x - “tin) + 5 B, cos E(x - xmin) 

=z 

n=l 

Y(Y) 
n=l 

G cash z(Y - Ymin) + % sinh z(Y - Ymin) 

or 

X(X) = 2 C’, cash C(X - Zmin) + D, sinh F(x - xmin) 
n=l Y 

Y(Y) = 2 An sin E(y - ykn) + 2 B, sin E(y - ymin) 
n=l n=l 

15 

(96) 

(97) 

WV 

(99) 



Figure 2: Coordinate system for section 3. 2. 
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The most general solution to the Dirichlet problem is a linear combination of the 
above solutions over a range of values of the separation constant. Rather than 
attempting to satisfy all the boundary conditions at once, it is more practical 
to exploit the linearity of Laplace’s equation and consider the auxiliary problem 

4x, Y) = fl(rl) <=O,O<‘I<l 

A(x,Y) = 0 (=1,0<‘1<1 
&, Y) = 0 rj=O,O<(<l (100) 

A(x,Y) = 0 o=l,O<[<l 

Once the solution to the auxiliary problem is known, the general solution can 
be obtained trivially by superposition. 

Since the potential has to vanish at q = 0 and q = 1, one can assume a 
solution of the form 

4x3 Y> = 2 (A ,, cash nrrcr< + B, sinh nxo<) sin n?rq (101) 
n=l 

for (100). By imposing the boundary condition at < = 0, it is immediately 
apparent that the coefficients A,, are simply the coefficients of the Fourier sine 
series expansion of fl(q). For the potential to vanish at t = 1 one must have 

A,, cash nxcu + B, sinh nxa = 0 (102) 

Using this relation and expressing the sum of hyperbolic functions as as hyper- 
bolic sine of the sum of their respective arguments one gets 

A(z, y) = 2 A, [ sin~~h~~~ ‘)I sin nxq 
T&=1 

(103) 

The solution to the general problem is therefore 

,4(x, y) = Al(x, y) + Az(x, Y) +A3cx9 Y) + A4(x,y) (104) 

where 

(105) 



and 

J 1 

A, = 2 h(v) sin n*rl drl (109) 
0 

1 

B, = 2 J h(v) sin nv dtl W) 
0 

c, = 2 J 1f3(o * smnr< d< 
0 

(111) 

D, = 2 J l f4W * smnx< de 
0 

(112) . 

Since the tangential derivative of the vector potential determines uniquely the 
normal magnetic field, one can also write series in terms of the Fourier coeffi- 
cients of the normal components of the field 

Al(x, y) = 5 $En [ sin”,~h~~~ ‘)I sin n?rq (113) 
?I=1 

- 
(115) 

and 

E,, = 2 
J 0 1 

B,(O, q) sin n?rq dq 

1 

F,, = 2 J B,(l,q)sinnxq dv 
0 

J 1 

G, = 2 
B, (< , 0) sin nrr< d< 

0 

H,, = 2 
J 0 1 

B,(<, 1) sin nr< d< 

3.2.2 The Neumann Problem 

The solution to the Neumann problem expresses the potential inside a closed 
region in terms of the values of its normal derivative on the boundary. The 
Neumann problem for the vector potential is defined by the following boundary 

(117) 

(118) 

(119) 

(120) 
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conditions: 

-8A/Bx = Bv(O, y) = Sl($ <=O,O<rl< 1 
-8A/ax = By(L,, y) = ga(rl) t=1,0<‘1<1 
way = &(x,0) = !73(<) ‘I=O,O<<<l (121) 

aNaY = B&J,) = 94(t) ‘I=o,o<t<1 

According to a well-known theorem of potential theory, the solution to this 
problem is unique within an arbitrary constant. 

In contrast with the Dirichlet problem, the boundary data for the Neu- 
mann problem must satisfy a compatibility condition ‘. This is merely a conse- 
quence of the requirement that the data be compatible with the integral form 
of Maxwell’s equations i.e 

f 
Be dI=O (122) 

The compatibility condition makes it necessary to use a different strategy to 
solve the general Neumann problem. We first consider the following auxiliary 
problem 

-aN)/az = W&Y) = #l(r)) (=O,O<q< 1 
-aAl)/as = B,(JL,Y) = 0 <=1,0<‘1<1 
aN)/ay = B,(x,O) = 0 ‘1=0,0<(<1 (123) 

aAl)lay = Bz(z, L,) = 0 r)=l,O<(<l 

where 

31(s) = a(v)-Ao (124) 

J 1 

A0 f a(r)) drl (125) 
0 

Clearly, 

J 

1 

GW~=O (126) 
0 

and the boundary data for this auxiliary problem is compatible. By a procedure 
similar to the one used to solve the Dirichlet problem, it is easily shown that 

A(‘)(x, y) = 2 &An [ cos~~h~~~ “1 cos nxq (127) 
n=l 

Similarly, using superposition, the solution to the problem defined by 

-alilac = B&Y) = #1(q) (=O,O<q< 1 
-a$ax = B,(L,,~) = &(q) <=l,O<f)<l 

Wz = B&,0) = j3(<) ~=o,o<(<l (128) 

= B,(x,L,) = 34(t) ‘1=1,0<(<1 

Ol.n fact, continuity of the potential on the boundary ensures that the data for the Dirichlet 
problem is compatible with the integral form of Maxwell’s equations. 
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A(%, Y) = A(‘)+, y) + Ac2)(t, y) + Ac3)(z, y) + Ac4)(z, y) 

where 

and 

A,, = 2 

B, = 2 

c, = 2 

J 1 

D, = 2 g4 (0 ~0s 4 4 
0 

(129) 

(130) 

(131) 

(132) 

(133) 

(134 

(135) 

(136) 

(137) 

(129) is obviously not the solution to the general Neumann problem. The latter 
can be obtained by adding the solution to the following problem to A as defined 

by 023) 
-BA(“)/dz = B,(O,Y) = Ao <=O,O<q<l 
-8A(“)/c3z = B,(L,Y) = Bo [=l,O<q<l 
8A(“)/cYy = B&,0) = co r#f=O,O<[<l (138) 
tIA(O) /0y = B,(z,Ly) = Do r)=O,O<c< 1 

where the compatibility condition 

- A&, + BoL, + CoL, - DoL, = 0 (139) 

holds. Interestingly, it is not possible to solve the boundary value problem 
defined by (121) directly using separation of variables. However, (121) can 

9~2,#3, 34 are defined in a similar way as 31 i.e., by subtracting the average values 

Bo,Co,Do ofg2,ga mdg4. 
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. 

be converted inlo a mathematically equivalent Dirichlet problem for the scalar 
potential V(O). Setting V(‘)(O,O) = 0, one has 

V(O)(O, y) = -cl&, -BoL,+DoL,+Ao(y-L,) <=O,O<rl<l 
V(‘)(L,, y) = -CoL, - Boy t=1,0<9<1 
V(O)(z,O) = -coz s=O,O<<<l 
V(O)@, L,) = -CoL, - BoL, + Do(z - L,) 9 =O,O<<< 1 

(140) 
In principle this problem could be solved using the technique which we already 
used to solve the general Dirichlet problem. However, a a function which satisfies 
the conditions (140) can be found by inspection. To see how this is done, 
consider the function 

$$(z,y)=K1z+Kzy+K32Y+K4 (141) 

$(z, y) is obviously harmonic; furthermore, it degenerates into a linear function 
of the axial coordinate along each one of the boundaries. Clearly, the problem 
is solved if one can find K1, K2, K3 and K4 such that 

qqO,O) = v(“)(%o) (142) 
qqL,, 0) = V(O)(Lz, 0) (143) 

t#(L,, Ly) = V(O)(L=, L,) (144) 
gqo, L,) = V(O)(O, LY) (145) 

It is easily verified that 

4(&Y) = 
Ao-Bo 

-Aoy-Coz+ L [ 1 ZY 2 (146) 

The corresponding vector potential can then be determined by integrating the 

A(‘+, y) = Coy - ,402 + (z2 - Y2) 

Thus, the general solution to the Neumann problem (121) is 

A(z, y) = A(‘+, y) + A+, y) + At2)(z, Y) + At3)(z, Y) + A(4)(z, Y) (148) 

Note that since the normal derivative of the potential is specified on the bound- 
ary the solution expresses the potential inside the region in terms of the Fourier 
coefficients of the tangential field on the boundary. 

3.2.3 Alternate Series 

In the two previous sections, we have established series which express the vector 
potential A as a function of its values and those of its tangential derivative on 
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the boundary. It it possible to construct other series by using other types 
of boundary conditions. One popular choice is to fix the value-of A and its 
tangential derivative on the horizontal symmetry axis which is usually chosen 
to coincide with the z-axis. 

Aby) = C,“=o A,, sin nkzz sinh nk,y + B, sin nkzz cash nk,y 
+ C,, cos nk,z sinh nk,y + D,, cos nkzx cash nk,y 

where 
27r 

k L 
=E- 

0 

(149) 

(150) 

L/2 
Al = +& J B,(x, 0) sin nktx dx (151) 

-L/2 

1 

-2;; ’ .ff;;;2 By@, 0) dx n=O 
B, = 

1 Jf$“lz By(x, 0) cos nk,x dx n # 0 (152) 
-ii7 

c, = 
{ 

+7&J:;;;, f&(x, 0) dx n= 0 

+& Jf;Ly2 Br(x, 0) cosnk,x dx n # 0 (153) 

L/2 
D, = +$ J B,(x,O)sinnk,x dx (154) 

-L/2 

3.3 Series Obtained by Analytic Continuation 
A powerful way to obtain a series representation of an analytic function over 
a region f2 is to obtain a series which converges on a line segment included in 
$2 and to extend this series over the whole plane using the principle of analytic 
continuation. In particular, if the segment is chosen so as to coincide with either 
the real or the complex axis, the arsenal of method used for real approximations 
becomes available to construct approximations. 

3.3.1 General Fourier Series Expansion 

We shall consider here the system of coordinates shown in figure 3. Along the 
z-axis, any analytic function fi can be seen as a complex function of the real 
variable x. More specifically lo , if 

i(z) = B,(r) + iB,(z) (155) 

loIn this section, the notation B is used to avoid confusion between the real magnetic field 
and the complex magnetic field. 
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Figure 3: Coordinate system for section 3. 3. 
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then, along x, one can write 

i(x) = BY(x) + iB,(x) (156) 

Seen as a function of x, B can be expanded as a Fourier series 

where 

= Cr cn + iEn] einkzr 

1 J L/2 
Gb 

= -t -L,/Z 
B, (~)e-~~‘== dx 

1 J L/2 

Ga = z -L,/2 
&.(x)e-i”k’x dx 

(157) 

(158) _ 

(159) 

(160) 

Let 

Equation (158) becomes 

G3 = b, + ia, (161) 

Gl - = b, + iii, (162) 

k(x) = (bo + i&o) + Crzl (b, + ii,) 
+i C,“=l (6, + iii,) 

Collecting terms 

i(x) = (b. + iso) + 2 2(b, + i6,) cos nk2x - 2(a, + i%) sinnk,x (165) 
n=l 

Substituting z = x + iy for x and using the identities 

sinnkr = sin nk,x cash nkzy + i cos nkzx sinh nkL.y (166) 
cosnkz = cos nk,x cash nk,y - isin nk,x sinh nk,y (167) 

equation (165) becomes 

B(r) = c,“=l 2 (b, cos nkox cash nk,y - a, sin nk,x cash nk,y) 
+ 2 (6s sin nk=x sinh nk,y + tin cos nk,x sinh r&y) 

+i XL - 2(b,sinnk,xsinhnk,y-a,cosnk,xsinhnk~y) 
+ 2 (an cos nkzx cash nk,y - tin sin nkzx cash n&y) 

w3) 
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This result is identical to (149). 

3.3.2 Cosine Series 

A different series can be obtained by expanding the field ss a cosine series. 

B(x) = f)cn + i&,) cos 2nk,x (169) 
n=O 

Bb) = c:io cn cos $k,x cash $k,y + E,, sin +k,x sinh !$nk,y) 
+i x20 E,, cos tk,x cash !jk,y - c,, sin $!k,xsinh $k,y) 

(170) 
where 

1 J L/2 
co = - 

Lx 
Bdx 

-L./Z 

2 J L/2 
C” + iE” = - 

Lx -L/2 
iI cos ;k.x dx 

3.3.3 Sine series 

One can also expand the complex field fi as a sine series along x. 

B(x) = e(c,., + it?,,) sin gk,x 
n=l 

(171) 

(172) 

(173) 

Substituting z = x + iy for x in (154) yields 

B(r) = C,“=I cnsin4kxxcosh $k%y-E,, cosfkzxsinh!jk,y 

+i CL E,, sin fk,x cash !jk,y + c,, cos ijk=x sinh 1 tk,y 
(174) 

where 
2 J L/2 

C” + ic, = - 
LX -IA/2 

fissin ik,xdx (175) 

4 L2 Polynomial Approximations 

We wish to approximate a function f(z) analytic over a region Q by a series of 
the form 

f(.t) 215 CnPnW (176) 
n=O 
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(9’) in the cask of complex functions defined over a convex simply connected 
region R [2]. The importance of this result is that it is theoretically possible 
to approximate to any degree of accuracy an analytic function by a polynomial 
(in the sense of the least square norm). In other words, c(N) can be made 
arbitrarily small by increasing the maximum order N. 

The elements of the matrix P are easily calculated 

(Pm(+&)) = it 1 z”’ *z” dxdy (184) 

= J Jx - iy)” (x + iy)” dxdy (185) 

In the particular case where f is a real function and Cl is a finite interval on the 
real axis one gets, with p,,(z) = z” 

(186) 

(187) 

This matrix, known as the Hilbert matrix, is notoriously ill-conditioned. This 
difficulty can be eliminated by performing a Gram-Schmidt orthogonalization 
of the polynomial base. The matrix P then becomes diagonal if the othogo- 
nal polynomials are used as a the expansion basis. It turns out that for real 
functions, the orthogonal polynomials are the Legendre polynomials. In the 
complex case, the situation is a lot more complicated because the coefficients 
of the orthogonal polynomials now depend on the shape of the region R. It is 
interesting to note that when the region R is a unit disk the set {z”} is already 
orthogonal. This is easily be demonstrated by writing z” in polar form: 

J (%m)*%nd&y = JJ 2r ’ rn+mei(n-m)# d,$&. Pw 0 0 lr = 6 
n+m+l nm (189) 

Using Gram-Schmidt orthonormalization algorithm, one can construct a set of 
orthogonal polynomials {II,(z)} on a rectangle of width L and of height (YL 

H,(Z) = z” + ~,-~(a, L)z”-’ + an-2(cr, L)znB2 + . . .ag(cq L) (190) 

Since the orthogonalization process ultimately involves only integration of poly- 
nomials of the form x”y”’ over a rectangular region, the coefllcients on(o) L) 
can be expressed analytically and tabulated. One then has 

f(z) = 5 CA(%) (191) 
n=O 
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Taking the inner product on each side, 

cn = (n,(%~~~.(l))(n,(%)lf(r)) (192) 

This solves the problem of the best approximation in the least square norm. 

5 Comments and Conclusion 

To the extent that tracking codes expect a polynomial representation of the 
field as an input, the L2 approximation of the field over the whole rectangular 
aperture seems to be the most appropriate representation to solve the problems 
caused by the divergence of the standard multipole expansion. This may indeed 
be the case; however, two important points must be kept in mind 

l The theory guarantees that the error can be made as small as one wishes. 
However, this may require the use of very high order polynomials. This 
fact sets a lower bound on the error since high order polynomials will 
quickly create overflow problems in a computer. 

l The L:! approximation will oscillate slightly around the exact field. This 
may be the source of non physical instabilities. 

One of the statements made by L. Michelotti in his paper concerning the 
reconstruction of the field in a rectangle aperture from the multipole data is 
erroneous. The functions z” do indeed form a complete basis over a rectangle [2]. 
It is well known that any simply connected convex domain can be conformally 
mapped onto the unit disk. Since the set (9’) constitutes an orthogonal basis 
on the unit disk, the functions defined by applying the mapping to {z”} will be 
mapped into an orthogonal basis on the rectangle. The mapped basis functions 
obtained in this manner are obviously not polynomials. This orthogonal basis 
is, however, not unique. 

The results presented in this note are theoretical. The usefulness of the 
expansions will have to be investigated by performing numerical experiments. 
The result of these experiments will be communicated in a upcoming note. 
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